Eco-Efficiency as a Decision Support Tool to Compare Renewable Energy Systems

Even though eco-efficiency (EE) is already applied to various energy systems, so far, no study investigates in detail the hourly, marginal and seasonal impacts of a decentralized energy system. This study assesses the hourly EE of the Research Park Zellik (RPZ), located in the Brussels metropolitan area for 2022 composed of photovoltaic installations, wind turbines and batteries. A cradle-to-grave life cycle assessment (LCA) to identify the carbon footprint (CF) and a levelized cost of electricity (LCOE) calculation is conducted. An existing design optimization framework is applied to the RPZ.... Mehr ...

Verfasser: Dominik Huber
Ander Martinez Alonso
Maeva Lavigne Philippot
Maarten Messagie
Dokumenttyp: Text
Erscheinungsdatum: 2023
Verlag/Hrsg.: Multidisciplinary Digital Publishing Institute
Schlagwörter: eco-efficiency / life cycle assessment / levelized cost of electricity / renewable energy system / photovoltaic installations / wind turbines / lithium-ion batteries / Belgium electricity grid
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26583432
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.3390/en16114478

Even though eco-efficiency (EE) is already applied to various energy systems, so far, no study investigates in detail the hourly, marginal and seasonal impacts of a decentralized energy system. This study assesses the hourly EE of the Research Park Zellik (RPZ), located in the Brussels metropolitan area for 2022 composed of photovoltaic installations, wind turbines and batteries. A cradle-to-grave life cycle assessment (LCA) to identify the carbon footprint (CF) and a levelized cost of electricity (LCOE) calculation is conducted. An existing design optimization framework is applied to the RPZ. Consumption data are obtained from smart meters of five consumers at the RPZ on a one-hour time resolution for 2022 and upscaled based on the annual consumption of the RPZ. As the EE is presented as the sum of the CF and the LCOE, a lower EE corresponds to an economically and environmentally preferable energy system. In a comparative framework, the developed method is applied to two different case studies, namely, (i) to an energy system in Vega de Valcerce in Spain and (ii) to an energy system in Bèli Bartoka in Poland. The average EE of the RPZ energy system in 2022 is 0.15 per kWh, while the average EE of the Polish and Spanish energy systems are 1.48 and 0.36 per kWh, respectively. When analyzing four selected weeks, both the LCOE and CF of the RPZ energy system are driven by the consumption of the Belgian electricity grid mix. In contrast, due to the very low LCOE and CF of the renewable energy sources, in particular wind turbines, the RPZ energy system’s EE benefits and lies below the EE of the Belgium electricity grid mix.