In vitro and in vivo infectious potential of coxiella burnetii: a study on Belgian livestock isolates.

Q-fever is a zoonosis caused by the gram-negative obligate intracellular pathogen Coxiella burnetii. Since its discovery, and particularly following the recent outbreaks in the Netherlands, C. burnetii appeared as a clear public health concern. In the present study, the infectious potential displayed by goat and cattle isolates of C. burnetii was compared to a reference strain (Nine Mile) using both in vitro (human HeLa and bovine macrophage cells) and in vivo (BALB/c mice) models. The isolates had distant genomic profiles with one--the goat isolate--being identical to the predominant strain c... Mehr ...

Verfasser: Marcella Mori
Samira Boarbi
Patrick Michel
Raïssa Bakinahe
Katleen Rits
Pierre Wattiau
David Fretin
Dokumenttyp: Artikel
Erscheinungsdatum: 2013
Reihe/Periodikum: PLoS ONE, Vol 8, Iss 6, p e67622 (2013)
Verlag/Hrsg.: Public Library of Science (PLoS)
Schlagwörter: Medicine / R / Science / Q
Sprache: Englisch
Permalink: https://search.fid-benelux.de/Record/base-26524059
Datenquelle: BASE; Originalkatalog
Powered By: BASE
Link(s) : https://doi.org/10.1371/journal.pone.0067622

Q-fever is a zoonosis caused by the gram-negative obligate intracellular pathogen Coxiella burnetii. Since its discovery, and particularly following the recent outbreaks in the Netherlands, C. burnetii appeared as a clear public health concern. In the present study, the infectious potential displayed by goat and cattle isolates of C. burnetii was compared to a reference strain (Nine Mile) using both in vitro (human HeLa and bovine macrophage cells) and in vivo (BALB/c mice) models. The isolates had distant genomic profiles with one--the goat isolate--being identical to the predominant strain circulating in the Netherlands during the 2007-2010 outbreaks. Infective doses were established with ethidium monoazide-PCR for the first time here applied to C. burnetii. This method allowed for the preparation of reproducible and characterized inocula thanks to its capacity to discriminate between live and dead cells. Globally, the proliferative capacity of the Nine Mile strain in cell lines and mice was higher compared to the newly isolated field strains. In vitro, the bovine C. burnetii isolate multiplied faster in a bovine macrophage cell line, an observation tentatively explained by the preferential specificity of this strain for allogeneic host cells. In the BALB/c mouse model, however, the goat and bovine isolates multiplied at about the same rate indicating no peculiar hypervirulent behavior in this animal model.