Spatial clustering of time series via mixture of autoregressions models and Markov random fields

Time series data arise in many medical and biological imaging scenarios. In such images, a time series is obtained at each of a large number of spatially dependent data units. It is interesting to organize these data into model-based clusters. A two-stage procedure is proposed. In stage 1, a mixture of autoregressions (MoAR) model is used to marginally cluster the data. The MoAR model is fitted using maximum marginal likelihood (MMaL) estimation via a minorization-maximization (MM) algorithm. In stage 2, a Markov random field (MRF) model induces a spatial structure onto the stage 1 clustering.... Mehr ...

Verfasser: Nguyen, Hien D
Dokumenttyp: Artikel
Reihe/Periodikum: Statistica Neerlandica
Verlag/Hrsg.: Oxford, Blackwell
Sprache: Englisch
ISSN: 0039-0402
Weitere Identifikatoren: doi: 10.1111/stan.12093
Permalink: https://search.fid-benelux.de/Record/olc-benelux-1984451286
URL: NULL
NULL
Datenquelle: Online Contents Benelux; Originalkatalog
Powered By: Verbundzentrale des GBV (VZG)
Link(s) : http://dx.doi.org/10.1111/stan.12093
http://dx.doi.org/10.1111/stan.12093
Wird geladen...