Spatial clustering of time series via mixture of autoregressions models and Markov random fields
Time series data arise in many medical and biological imaging scenarios. In such images, a time series is obtained at each of a large number of spatially dependent data units. It is interesting to organize these data into model-based clusters. A two-stage procedure is proposed. In stage 1, a mixture of autoregressions (MoAR) model is used to marginally cluster the data. The MoAR model is fitted using maximum marginal likelihood (MMaL) estimation via a minorization-maximization (MM) algorithm. In stage 2, a Markov random field (MRF) model induces a spatial structure onto the stage 1 clustering.... Mehr ...
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Reihe/Periodikum: | Statistica Neerlandica |
Verlag/Hrsg.: |
Oxford,
Blackwell
|
Sprache: | Englisch |
ISSN: | 0039-0402 |
Weitere Identifikatoren: | doi: 10.1111/stan.12093 |
Permalink: | https://search.fid-benelux.de/Record/olc-benelux-1984451286 |
URL: | NULL NULL |
Datenquelle: | Online Contents Benelux; Originalkatalog |
Powered By: | Verbundzentrale des GBV (VZG) |
Link(s) : | http://dx.doi.org/10.1111/stan.12093
http://dx.doi.org/10.1111/stan.12093 |
Wird geladen...