A Skew-normal copula-driven GLMM
This paper presents a method for fitting a copula-driven generalized linear mixed models. For added flexibility, the skew-normal copula is adopted for fitting. The correlation matrix of the skew-normal copula is used to capture the dependence structure within units, while the fixed and random effects coefficients are estimated through the mean of the copula. For estimation, a Monte Carlo expectation-maximization algorithm is developed. Simulations are shown alongside a real data example from the Framingham Heart Study.
Verfasser: | |
---|---|
Dokumenttyp: | Artikel |
Reihe/Periodikum: | Statistica Neerlandica |
Verlag/Hrsg.: |
Oxford,
Blackwell
|
Sprache: | Englisch |
ISSN: | 0039-0402 |
Weitere Identifikatoren: | doi: 10.1111/stan.12092 |
Permalink: | https://search.fid-benelux.de/Record/olc-benelux-1984451251 |
URL: | NULL NULL |
Datenquelle: | Online Contents Benelux; Originalkatalog |
Powered By: | Verbundzentrale des GBV (VZG) |
Link(s) : | http://dx.doi.org/10.1111/stan.12092
http://dx.doi.org/10.1111/stan.12092 |
Wird geladen...