A Skew-normal copula-driven GLMM

This paper presents a method for fitting a copula-driven generalized linear mixed models. For added flexibility, the skew-normal copula is adopted for fitting. The correlation matrix of the skew-normal copula is used to capture the dependence structure within units, while the fixed and random effects coefficients are estimated through the mean of the copula. For estimation, a Monte Carlo expectation-maximization algorithm is developed. Simulations are shown alongside a real data example from the Framingham Heart Study.

Verfasser: Das, Kalyan
Dokumenttyp: Artikel
Reihe/Periodikum: Statistica Neerlandica
Verlag/Hrsg.: Oxford, Blackwell
Sprache: Englisch
ISSN: 0039-0402
Weitere Identifikatoren: doi: 10.1111/stan.12092
Permalink: https://search.fid-benelux.de/Record/olc-benelux-1984451251
URL: NULL
NULL
Datenquelle: Online Contents Benelux; Originalkatalog
Powered By: Verbundzentrale des GBV (VZG)
Link(s) : http://dx.doi.org/10.1111/stan.12092
http://dx.doi.org/10.1111/stan.12092
Wird geladen...