Markov switching quantile autoregression

This paper considers the location-scale quantile autoregression in which the location and scale parameters are subject to regime shifts. The regime changes in lower and upper tails are determined by the outcome of a latent, discrete-state Markov process. The new method provides direct inference and estimate for different parts of a non-stationary time series distribution. Bayesian inference for switching regimes within a quantile, via a three-parameter asymmetric Laplace distribution, is adapted and designed for parameter estimation. Using the Bayesian output, the marginal likelihood is readil... Mehr ...

Verfasser: Liu, Xiaochun
Dokumenttyp: Artikel
Reihe/Periodikum: Statistica Neerlandica
Verlag/Hrsg.: Oxford, Blackwell
Sprache: Englisch
ISSN: 0039-0402
Weitere Identifikatoren: doi: 10.1111/stan.12091
Permalink: https://search.fid-benelux.de/Record/olc-benelux-1984451235
URL: NULL
NULL
Datenquelle: Online Contents Benelux; Originalkatalog
Powered By: Verbundzentrale des GBV (VZG)
Link(s) : http://dx.doi.org/10.1111/stan.12091
http://dx.doi.org/10.1111/stan.12091
Wird geladen...