Variable selection via composite quantile regression with dependent errors

We propose composite quantile regression for dependent data, in which the errors are from short‐range dependent and strictly stationary linear processes. Under some regularity conditions, we show that composite quantile estimator enjoys root‐ n consistency and asymptotic normality. We investigate the asymptotic relative efficiency of composite quantile estimator to both single‐level quantile regression and least‐squares regression. When the errors have finite variance, the relative efficiency of composite quantile estimator with respect to the least‐squares estimator has a universal lower boun... Mehr ...

Verfasser: Tang, Yanlin
Dokumenttyp: Artikel
Reihe/Periodikum: Statistica Neerlandica
Verlag/Hrsg.: Oxford, Blackwell
Sprache: Englisch
ISSN: 0039-0402
Weitere Identifikatoren: doi: 10.1111/stan.12035
Permalink: https://search.fid-benelux.de/Record/olc-benelux-1964987377
URL: NULL
NULL
Datenquelle: Online Contents Benelux; Originalkatalog
Powered By: Verbundzentrale des GBV (VZG)
Link(s) : http://dx.doi.org/10.1111/stan.12035
http://dx.doi.org/10.1111/stan.12035
Wird geladen...